Skip navigation

This solution is for the book I am currently reading. All of my notes and solutions are available at Google Code.

Here is my work for problem 2.18:

Using the table you filled in when solving Problem 2.16, fill in the
following table describing the function T2U₄:


  x   T2U₄(x)
 -------------
 -8
 -------------
 -6
 -------------
 -4
 -------------
 -1
 -------------
  0
 -------------
  3
 -------------


(from 2.16):

  Hexadecimal  Binary                    Unsigned         Signed
  -------------------------------------------------------------------------------
       A        1010               2^3 + 2^1 = 10                 -2^3 + 2^1 = -6
  -------------------------------------------------------------------------------
       0        0000                       0 =  0                          0 =  0
  -------------------------------------------------------------------------------
       3        0011               2^2 + 2^0 =  3                  2^2 + 2^0 =  3
  -------------------------------------------------------------------------------
       8        1000                     2^3 =  8                       -2^3 = -8
  -------------------------------------------------------------------------------
       C        1100               2^3 + 2^2 = 12                 -2^3 + 2^2 = -4
  -------------------------------------------------------------------------------
       F        1111   2^3 + 2^2 + 2^1 + 2^0 = 15    -2^3 + 2^2 + 2^1 + 2^0 =  -1
  -------------------------------------------------------------------------------


  x   T2U₄(x)
 -------------
 -8     8
 -------------
 -6    10 
 -------------
 -4    12 
 -------------
 -1    15 
 -------------
  0     0 
 -------------
  3     4
 -------------



Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: